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Abstract—The kinking of an initially stationary crack in a linear elastic body due to dynamic
loading is solved using linear superposition to construct dual singular integral equations, which
are solved numerically. The results for stress wave loading as well as loading on the crack faces
only are presented, with an estimated accuracy of better than 3%;. Some conclusions on crack
velocity and kink angle are drawn for a fracture criterion which requires K, = 0.

INTRODUCTION

When dynamic loading is applied to a body with internal cracks, the resulting stress wave
may cause the stress intensity factor at any crack tip to become greater than the value
required for initiation of crack growth and continued crack propagation. The direction of
propagation, as well as the velocity of crack propagation, at the instant of initiation will
depend on the local stress field around the crack tip. These situations are of importance in
many problems: for example, earthquake generated stress waves impinging on faults in the
mantle of the earth, explosive mining of coal by rubblerizing material underground and the
extension of fractures to improve the permeability of oil bearing rock around a borehole for
better recovery of oil.

It is only recently that experiments have been performed carefully enough that they can
be modeled mathematically. In particular, the experiments of Ravi-Chander and Knauss{1]
appear to be close to producing the required information for determining precisely the
criterion for crack kinking due to stress wave loading. The experiments are obviously
difficult to do and it is important that they be interpreted correctly.

The analysis undertaken here is the extension of previous work{2] in which a crack
subjected to an anti-plane strain stress wave loading (and other loadings) was solved. For
this case, verification of the accuracy of the numerical method was made by comparing the
results with analytical results presented in Burgers and Dempsey[3]. The numerical method
for the plane strain case considered here, is very similar to that used in the Mode III case.
Analytical results in plane strain are so far limited to the case when no kinking occurs. The
numerical results for the straight crack case are of the same accuracy as for the Mode III
problem. Using this fact and that the method foliows that used to analyze the Mode III case,
it is believed that the results for all kinking angles considered in the plane strain case will
be of the same accuracy as the results in [3]; that is within 3% of the correct results.

The analysis requires that the problem considered be self-similar in the variables r and
t, where r is the radial distance from the origin and ¢ is time. This puts a restriction on the
problems that can be considered. However, it is felt that the solutions obtained below will
give some insight into the kinking of a crack and how the analysis can be extended to the
physically correct problem.

The kinking of a crack in plane strain has also been considered in[4] where the problem
was solved by finite differences. Due to the difficulty in interpolation of singular stress fields
near the kink and the crack tip, the results in[4] are not thought to be accurate for short times
after kinking, although they may improve for longer times. The method in[4] is however
more generally applicable than that used here and problems which are not self-similar in r
and ¢ can be treated.

THE KINKED CRACK: PROBLEM DEFINITION AND METHOD OF SOLUTION

We require that the problems considered be self-similar in the variables r and ¢. For this
paper we will consider only the case when stresses are functions of r/z. For this to be so, the
geometry must have no characteristic length associated with it.
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736 P. BURGERS

Fig. 1. Stress wavefront pattern for a planar normal stress-wave impacting a semi-infinite crack.

The geometry for the kinked crack under consideration with the wavefront pattern for
planar normal stress wave loading is shown in Fig. 1. In a stress-free linear elastic homoge-
nous isotropic full-space there exists a stationary semi-infinite crack, which will be referred
to as the old crack. Attime ¢ = 0, a crack, referred to as the new crack, propagates out of the
tip of the semi-infinite crack. The velocity of propagation v is constant, and the line of
propagation is straight, making an angle § with the semi-infinite crack. Also, at time ¢ = 0
some loading is applied. As already stated, this loading must generate stresses which are
self-similar in r and ¢. Examples of this type of loading are; case (a) constant tractions
appearing on the faces of the new crack; case (b) tractions applied to the old ¢rack faces as
a step function in time and of constant magnitude in space; and case (c) a planar stress wave
of constant magnitude, making an angle o with the old crack line and reaching the origin of
time ¢ = 0. Note that for the case when o = 0, the loading cases (a) and (b) can be combined
(after multiplication by the correct constants) to-give case (c).

We follow the method using superposition of dislocations described in[2, 5}. This method
was initially used to solve static fracture problems; see the article by Rice[6] for a review of
applications and theory. We start by solving the problem of a dislocation being emitted from
the tip of the old crack along the line @ = §. Since the skew crack problem is not symmetric
about the line = J, it involves both Mode I and Mode II deformation and the two cases of
an edge dislocation (where the Burgers vector is a displacement discontinuity perpendicular
to the dislocation path) and a shear dislocation (where the Burgers vector is a displacement
discontinuity parallel to the dislocation path) are required. The dislocations propagate out
from the tip of the old crack at constant velocity ». This velocity will be used as the
superposition parameter; that is a distribution of dislocations with velocities u varying from
zero to v will be used. For the problems considered, the resultant stress distribution due to
this superposition must be self-similar and this implies that the form of the discontinuity of
each dislocation must generate self-similar stresses; that is, the Burgers vector must grow
linearly with time.

When these dislocation solutions are superimposed using as yet unknown distributions
for the edge and shear dislocations, the resultant stress along the crack line can be equated
to some known function; for example, equal to the magnitude of the applied traction
components on the new crack faces for loading case (a). This results in a Cauchy singular
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integral equation for which there are a number of very accurate numerical methods|[2, 7-9],
which can be used to obtain the stress intensity factors. To obtain the dislocation solutions,
a number of simpler problems are used. These solutions are obtained in terms of definite
integrals which must be evaluated numerically.

REQUIRED GREEN'S FUNCTION SOLUTIONS
Edge dislocation growing linearly with time

Consider an edge dislocation which appears in a linear elastic full-space at time ¢t =0
(with no crack). The -ve x-axis lines up with the old crack line, with the origin at the old
crack tip. The x-axis lines up with the new crack line, making an angle é with the x-axis.
See Fig. 2(a). One end of the dislocation propagates out along the x-axis at a constant
velocity w and the other end remains stationary at the origin, ¥ = 0. The Burgers vector
grows linearly with time as discussed above.

The displacements are given by u,, u, in the x, z directions, respectively. By the plane
strain assumption, u,=0. The relevant stress components needed for solving the boundary
value problem are o,,, 0,, and a,,. A bar over a superscript will indicate if a quantity is
represented in the x-Z coordinate system, e.g. u; is the displacement in the Z-direction.

The full space is considered to be at rest for all ¢ < 0 with zero displacements; that is, zero
initial conditions only are considered. (This applies to all subsequent problems as well.)
From symmetry we note that only the half-plane Z = 0 need be considered. The boundary
conditions for 1 >0, Z =0 and — o0 < X < o0 are

uy(%,0,t) = At[H(wt — %) — H(— %)), (1.1)
0%, 0, 1) =0. (1.2)

This problem is fairly standard and a description of the solution techniques can be found
in the book by Achenbach([10]. Using Laplace transforms and the Cagniard-deHoop
method for inversion of Laplace Transforms{11, 12, 10}, the solution is readily found to be
given as follows. Let r = (%2 + 22}, tan 6 = 7/, p be the mass density of the material, x and
v be the shear modulus and Poisson’s ratio characterizing the material, ¢, be the longitudinal
wave speed and cg be the shear wave speed. The slownesses of the longitudinal and shear
waves are a = 1/c;, b = 1/cg respectively and let d = 1/w.
Two complex variables A and n are introduced such that

: _ _ /72 1”2
A= —;cos()+i|sin0|<ﬁ—a2> (1.3)

z
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\
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(®)

Fig. 2(a). Edge dislocation propagating out of the origin at velocity ¢ along the $-axis. (b) Shear
dislocation propagating out of the origin at velocity u along the x-axis.
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where 7 is an integration parameter and i = (— 1)' 5 is obtained by replacing a by b in
(1.3). Two complex functions « and f are introduced, defined by

a(l) = (a*— A% and B(A) = (b* — i}~ (1.49)
a is analytic in the complex A-plane with branch cuts from A = —o0 to-d = —gand A =«
to A = co. For B, the branch cuts go from A= —w tol=—-band i=btoi=w

The relevant stress components are given by

tjr £

Ack(r/t, 8, w) = Af Z (r/z,9; w)d(z/r)

AL [{QE -6 2+ 402
nb* a(d) @+ 2y o(z/r)

H(z/r — a)

0

2d+n On

W B0 ey b)}d(r/r),
Ack(r/t,6;w)=A mi(r/t,g;w)d(t/r) (1.5)
_ A —(b* = 2a%+21?) L, 2d+4 8A
i [ T - e -
2d 0
+ B0 s s Hr b)} d(zr),

tr E

Aclr/t, 8, w)y=A| Y(r/t,0;w)d(z/r)

a xi

WA (o 2d+) 0
—-nbzlmﬁ { 2}.(21 b2)mmﬂ(f/r —a)

2d+n 0On
(d+n)a(x/r)

where the superscript E indicates the quantity is for the edge dislocation problem. Note
that these quantities are normalized for A = 1. It is immediately observed that the stresses
have the desired property of being functions of r/r and 6 only. Also, it is noted that when
A and n are real (8 = 0), in each term of the above integrals a double pole will result at
d. Since these integrals must be evaluated numerically, care must be taken about these
points. The method used is described in more detail in[S] and relies on separating the
integrand into a regular part which is handled numerically and a singular part which is
calculated analytically. This technique was also used successfully in{2].

+27(2n° — b%) H(t/r b)} d(z/r),

Shear dislocation growing linearly with time

We consider a shear dislocation which appears in a linear elastic full-space at time ¢ =0
(with no crack). The geometry is the same as for the edge dislocation described above,
except that the Burgers vector is a discontinuity in #; and not u; . See Fig. 2b. Note that
the problem is anti-symmetric about 7 = 0 and therefore only the half-plane z > 0 need
be considered. Again zero initial conditions are used.

The boundary conditions for 1 >0, £ =0, —o0c <X < 0 are

u; (5,0, 1) = At[H(wt — %) — H(— %)), @.1)
0::(%,0,1)=0. (2.2)

Using the notation given in the previous section, the relevant stress components are given
below. A superscript S will indicate the quantity which comes from the shear dislocation
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problem with A= 1.

(A +4d)

a 77

AoSr/nBiwy=A | S (), B w)d(r/r)———lmf”'{—2/1(2,12—1;2) 2d +4

P gl —a)+ 2m@n— by 22N _On

H(z/r — b)} d(z/r),

* 3@ R0
AcSdr]t, 0 w) = A a”i(r/ze wyd(e/r) = — ,ﬁlmj {2;.(1;2 207 + 217
X S Al = a) = 0@ =
e S b)} dcefr), @3)
aasiein, Biwy=a[ S G dein) = ~ £ tm j {4/12 o) s

Qn*—bY 2d+n o

x H(z[r —a) + Bm) (n +d)Ya(z)r)

H(z/r — b)} d(t/r).

Normal point load growing linearly with time

The superposition of forces applied to the old crack faces, to cancel out the stresses
obtained along the old crack line due to the edge and shear dislocations, requires the
solution to normal and shear point loads, which grow linearly with time and propagate
out along the old crack faces at constant velocity v (no new crack). See Figs. 3(a, b).

The problem is symmetric about z = 0 so only the half-space z > 0 need be considered.
Zero initial conditions are used and the boundary conditions for the normal point load
are for t >0,z=0

0,,(x,0,1)=Auté(vt + x) for x <0, 3.1
u(x,0,0)=0 for x >0, (3.2)
6,,(x,0,1)=0 for — 00 < x < 0.

The same solution technique is used as in the dislocation problems, except that in this
case a Weiner—Hopf problem results. The method used to solve this is given in[13, 10] and
since there is nothing novel about the solution, only the results will be given. Let
r=(x*+z9)" tan@ =z/x, and A, n be defined as in (1.3) with § replaced by 6. The
functions « and B are decomposed into parts which are analytic in the left-hand and

f r4

vt

’1/7 "

(a)

WT

(b)

Fig. 3(a). Normal point loads propagating out along the faces of the semi-infinite crack at velocity
v. (b) Shear point loads propagating out along the faces of the semi-infinite crack at velocity v.
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right-hand half planes respectively. That is

a(d) =a,(Da_(A)=(a + 4)"*a - )",

B(A)= B (AB_(A)= (b +A)b — 2)'~, (3.4)
where o,,f, are analytic in the A-plane with a branch cut from A= —ow to
A= —a, A = — b respectively and «_, f_ are analytic in the A-plane with a branch cut

from 4 =a, A = b respectively to 4 =
The Rayleigh wave function,

R(A) =422 (A)B(A) + (242 — by 3.5)

appears and must be decomposed into parts analytic in either the left- or right-hand half
planes. It can be shown[10] that R(1) =0 has roots at + 1/c, where 1/c is the Rayleigh
wave speed. Let k¥ = 2(b% — a?),

i b . 422(22 — aZ)l/Z(b2 — 22)1/2 dz
Sy = exp{ - EJ tan [ B — 27 Py (3.6)

a

and &£ = 1/v.
R{%) can be decomposed then into

R(A) =kS, (A)S_(A)c*— 2. 3.7

The solution to the above problem is

uA "R =bY G A
0ulrt,0:0) = uAs. Z(r/tf’ V)= ™ J { +(/1) S_@)c = D)

Bl (), Heejr — b)} dcejr),

0

x H(t/r —a)+ G(n)

S_(c—n) " oG / )

where

0@ 1 u00 20
S.Oe+di-¢ @& w

G(A) =

a NP
axx(r/za 8; U) = ”A%Z(r!’l, 8; 0)

uAI a [ (b2—2a2+2/12)(212~b2) G()
e op 2, (DS_ (e — 1) a( /)

TN SR
e O Wagmt e e,

H(t/r —a)

(4]

51 10,050) = AT (/1 030) (3.8)
_pA L8[ (242 — b)2Aa_(4)
= mé&L{ S (e — 1)
. oA _ (@n* b2y
X G"(n)mﬂ(t/r - b)} d(z/r).

The superscript NP indicates the term applies to the normal point load problem.
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Shear point load growing linearly with time _
This problem is anti-symmetric about z = 0 so only the half-space need be considered.
The boundary conditions for the shear point load problems are, for t >0,z =0

0,.,(x,0,1) = pAtd (vt + x) x <0, 4.1)
u(x,0,1)=0 x>0,
0,.(x,0,t)=0 for — 0 < x < 0.

The same notation as used in the normal point load problem is used. The relevant stress
components are

oulrl1,0:0) = WAZS 11, 050) = ~ L0 m 5 jol/r{g—%_({_)——)(ZP — B)GH(A)
S O G e -5
x H(fr - b)} aGejr),
where
e BO 1

NAERERN

tr 2
0.(r/1,0;0) = uA-—Z(r/t 6; )_“A 6[’{_@_3_«1:_2/_2)215 DG

v ), S_(AX
aa @2 =028 () -,
e Y e —m O )a<r/r)
x H(tfr — b)} d(z/r), 4.2)

) o 3k L\_ kA d (™" (4% (A)B_(1) 04
a.(r/t,8;v)= #AEJEL:'(’/[’ 0;,v)= — " Im % L {m Gb('{)_a(t/r)
(2n> = b'G*(n)  on

X HGr —a) + g s e — M ae/n)

H(t/r — b)} d(z/r).

Superposition of point loads to cancel tractions on the old crack faces

The superposition of the above point load solutions to cancel out the tractions across
the old crack line due to the two dislocations is described by Freund[14]. Since it may not
be immediately obvious and is extremely useful Freund’s argument will be repeated here.

We first note that it is the stresses o,, and a,, due to the dislocations which must be
cancelled on the negative x-axis. From eqns (1.5) and (2.3), we observe that the stresses
due to the dislocations are of the form f(r/t) for @ = const. This means a fixed stress level
propagates out at a constant speed v =r/t along a line 6 =const. Quoting from
Freund[14], “In particular, a stress level f(1/v) radiates out at the speed v for ¢ > 0. The
speed v varies between zero and the longitudinal wave speed. The x-coordinates at time
t of the stress levels moving with speeds v and v + dv are —vr and — (v + dv)t, respectively.
Thus, to first order terms in the infinitesimal dv, the resultant force due to all stress levels
with speeds between v and v + dv is ¢f(1/v) dv and this force acts at x = —vz.” Liberty has
been taken in the quote to change the notation to that used in this paper.

The superposition can now be made over the range of v. The stresses due to the
dislocations appearing as above, but with a semi-infinite traction free crack along the
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negative x-axis are

4

0

a®(r/1,8;v) = a*(r/t, 0; u) —J L{afz(v, n: u)%g(r/t, 8; v)

i 5 sP ’
+o’xz(v,n;u)51—)2(r/t,9;v) do (5.1)

where superscript EC indicates the edge dislocation appearing at the origin of a full space
with a traction free semi-infinite crack along the negative x-axis. See Figs. 4(a, b). Note
that the stresses due to the edge dislocation have been transformed to the x—z coordinate
system. For the similar problem with the edge dislocation replaced by a shear dislocation,
the stresses are as in eqn (5.1) with the superscript E’s replaced by S’s.

The integral in eqn (5.1) can be calculated numerically as it stands but this turns out
to be extremely time consuming (on the computer). However, some observations can be
made which will allow it to be integrated by parts and give an integral which will be less
costly to handle. To illustrate this, consider the first part of the integral only. From (1.5)
we observe agZ(r/t; 6;u) (obtained by rotating the coordinate system through an angle
8 = — ) depends on r/t only in the upper limit of integration. Therefore

v E

cL 8”” cp 1/ l a NP
J oo, m;u)=Y (r/1,8;v) do =J { Y(v; 7 u)d(-—,) Y(r/1,8;v)dv
Ov= 0o 1la 5 v’ J{ov

0

13 1 E NP Ijv E NP v=cyp
=J. l—;Z(v,n;u)Z(r/l,O;v)dv +{[ Z(v’,n;u)dv’]Z(r/t,G;u)} . (5.2
0 7z = a Iz

- v=0

It can be shown that the term in square brackets when evaluated at v =¢, and v =0 is
zero. Therefore, we are left with a simpler integral which is less costly to evaluate. The
same manipulation can be made on the second term in the integral in eqn (5.1) and the
terms coming from the shear dislocation.

FORMATION OF THE CAUCHY SINGULAR EQUATION
The dislocation solutions obtained are now superimposed over some as yet unknown
distribution of dislocations using the velocity of dislocations u as the superposition param-
eter. Let the distribution for edge dislocations be F#(u) and for shear dislocations be F5(u).
The stress at point is given by

ver

a(r/t,0)= J {g5(r /1, 0; uYFEw) + a*(r /1, 05 u)F(u)} du (6.1)

[3}

(b)

Fig. 4(a). Edge dislocation propagating out of the tip of the semi-infinite crack at velocity u along
the x-axis. (b) Shear dislocation propagation out of the tip of the semi-infinite crack at velocity
u along the x-axis.
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We now note some asymptotic results for the stress field of the kinked crack. From({15],
we know that the stresses near the tip of a propagating crack become infinite as the distance
to the crack tip tends to zero. We also note that as r -0, the inertial effects will tend to zero;
that is, the stresses will have a radial and angular dependence, the same as that of a wedge
of the same angle loaded by the equivalent static tractions. From[16}, for example, we can
conclude that at the kink (i.e. as r —0) the stresses will be less than square root singular,
(unless the loading is square root singular). This argument has been used frequently before:
see for example[2, 7, 8]. We also note that for the dislocation problems with a traction free
semi-infinite crack the stresses are square root singular at r =0. Therefore,
following[2, 7, 8], we assume the forms

E s,
£y &) sy 8 )
Fw) um(vcr“ ”)m’ Fuy= u'(ver — u)'? ©62)
where g7(u) and g%u) are bounded functions and
25(0)=¢%(0)=0. 6.3)

This technique has been used successfully in{2} where it could be checked with analytical
results.

To solve the problems of interest, the stresses due to this super-position of dislocations
along the kinked crack line is set equal to the applied stresses along this line. These applied
stresses may take two forms. If the only loading is due to applied tractions on the new
crack faces, the stresses are set equal to the applied stresses. If the loading is applied
elsewhere (not on the new crack faces), the problem with the desired loading is first solved
without the new crack. The problem with the new crack is then thought of as having the
correct tractions applied to the new crack faces so that these faces do not separate. The
relevant stresses due to the superposition of dislocations are then set equal to negative of
the traction components applied to the new crack faces. By superposition the original
problem will then be solved.

When the above procedure is performed, two coupled Cauchy singular integral
equations result,

(e[t 6 = 0) = L ”“{aff(rfz, 8 u)F*(u)
+05(r /1,0 =0; u)FS(u)} du (6.4)
and
ot (r /1,0 =0) = J; W{agf(r /1,8 = 0; u)Fe(u)
+08(r/t, 8 =0; u)Fs(u)} du.

These equations are obviously coupled, but a procedure similar to that used in[7] can be
used. For this case the Labatto-Chebyshev integration was used. If the Gauss—Chebyshev
integration, together with the modification by Krenk[17], had been used, the accuracy of
the results would probably be the same. As mentioned earlier, the total error is expected
to be of the order of 3%.

The mode I and II stress intensity factors are given by

K= — pn)g o)k R b3 (1 o2y ~ a?) -, (6.5)

Ky=— I-l(zn)igs(vcr)ﬁvicri/bz(l/l’%‘T -5 —%’

S8 Vol. 19, No. 8—F
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where

R = (2o} — b+ 4fvlr(@® — 1foipi(b? — 1jolp). (6.6)

LOADING CASES
In each case, two loadings will be considered.

Case (a)

The first loading will be constant normal tractions with zero shear tractions applied
to the new crack faces. The second will be constant shear tractions with zero normal
tractions applied to the new crack faces. For the first loading, the results show that K,
is negligible and for the second K, is negligible. By negligible it is means at least one to
two orders of magnitude less than the other stress intensity factor. In eqn (6.4),

oL (r /1, 0 = 0) = uA, 6L2%(r /1,6 =0) =0 (7.1)

for the first loading and
oLo(r/t, 0 = 0) =0, cL*(r /1,0 = 0) = pA (7.2)

for the second loading.

Case (b)

The first loading is constant normal tractions with zero shear tractions applied to the
old crack faces at time ¢ = 0 and the second loading is constant shear tractions with zero
normal tractions applied to the old crack faces at time ¢ = 0. The expressions will be given
later as special cases of the loadings in case (c).

Case (c)

The effect of a planar stress wave impinging on the old crack is modeled here. Let the
axis parallel and perpendicular to the wave front be denoted by as shown in Fig. 1. The
x’-axis makes an angle « with the x-axis.

This first case corresponds to a jump in the strain component ¢, from zero ahead of
the stress wave to a constant value uA, behind the wavefront before the stress wave meets
the old crack. The value of the other strain components is zero. The problem of this stress
wave meeting the old crack, with no kink forming, can be solved by superposition. It can
be split up into two problems; the first is a planar stress wave propagating through an
infinite body (no crack present) and the second is an infinite body with a semi-infinite crack
(which is the old crack), with just the correct tractions applied to the crack faces such that
the sum of two problems gives zero tractions on the old crack. The boundary conditions
for the second problem, on the old crack faces, are for t >0,z =0,x <0

6.(x,0,)= — (1 —2a¥b*sin a)uAyH(c t + sin ax),
0,..(x,0,1)=2a*/b*cos x sin au Ay H(c, + sin ox). (7.3)
The initial conditions are zero at ¢ = 0.

This problem can again be separated into two parts, which are either symmetric or
antisymmetric about z = 0. Therefore, only the half-space z > 0 need be considered. We
first note that the intersection of the wave front and the negative x-axis is a point moving
at a speed v, = ¢;/sin a. Two parts are then (1) the case when on z =0,1>0

0,(x,0,1)=puAyH( + x[v,) forx <0,
0,,(x,0,)=0 forx <0, (7.4)
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and
u(x,0,t)=0 for x > 0.

with zero initial conditions, and (2) the case when on z =0,¢ >0,

0,(x,0,t)=0 forx <0,
0,(x,0,1) = pAyH(t + x[v,) forx <0, (7.5)
and
u(x,0,1)=0 forx > 0.

The solution to the first and second parts is just

Np sp
pAy Y (r/t,0;0,) and by (r/t,6;v,)

respectively. Therefore, the solution to the superposition problem with the crack for the
first case with boundary conditions, given by (7.3) is given by

NP
o(r/t,0 = — (1 —2a*/b*sin YuAy Y (r/t,0;v,)
SP
+2a’/b?cos a sinapAy Y (r/t, 0;0,). (1.6)
For the stresses of the first case of loading case (c), the stresses due to the plane stress
wave in an infinite body (no crack) must be added; that is, the stresses
G, Ax", 2 1) = uAyH(c;t —2),
.Ax", 2z, )= (1 = 2a*bHuA et —z°), a.n
o’x’z’(xl’ Z’, r) =0

must be added to the stresses in eqn (7.6).

For the second case, the stress wave represents a jump in the strain component ¢, from
zero ahead of the planar wave front to a constant uAg, behind the wave front before
meeting the crack-tip. Again the problem can be split up into a problem with no new crack
and a problem with the new crack. The boundary conditions on the old crack faces for
the latter problem are for 1 >0,z =0,x <0

0,(x,0,1)= —2cosa sinauAgH(cst + sin ax),
6.{x,0,t)= — (cos a? — sin® a)uAgH (cgt + sin ax). (7.8)
with zero initial conditions. Again, this can be split into two problems for which the
solution is known. Let vg = ¢¢fsina. The solution to the problem with the crack with
boundary conditions given by eqn (7.8) is

NP
a(rft,0)= —2cosa sin apASZ (r/t, 8;v5)

Sp
— (cos? & — sin? a)uAg Z (r/t, 8;vy). 7.9
The stresses for the second part of loading case (c) are then given by adding

0, X, 2 ) =0,0,.(x,2,t)=0
aiz'(x” Z” t) = .uASH(CSt - Z’) (710)

to the stresses in (7.9).
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Note that the two cases in loading case (b) can be obtained by setting x =0 and
v, =vs=0 in eqns (7.6) and (7.9).

NUMERICAL PROCEDURE

The superposition calculation to obtain ¢ € and ¢5¢ and the evaluation of ¥ and Z57
is done numerically. Gaussian integration was used with the algorithms given in[18]. The
integration ranges were split up as follows: if r /1 < 0.1 ¢, the integral was split up into three
ranges; the first from r/f tor/t + 0.1 ¢g; the second from #/t + 0.1 ¢5to c5and the third from
¢ to ¢,. Otherwise, if r/t > 0.1 ¢, only two ranges were used: the first from r /1 to ¢g and the
second from ¢ to ¢;. In each range 25 integration points were used.

Only when ¢ —n/2 and/or when r/t—0 was there any problem with the numerical
integration. If too many integration points were chosen when r/t was close to 0, a numerical
instability occurred. This was due to the integrands being the difference in two functions,
both of which are very large as r/t »0. With 25 integration points and ! 1 collocation points
in the solution of the integral equations, this problem was avoided and still gave sufficiently
accurate results.

A problem occurred in the evaluation of £ and Z%° when v —0 and § —n /2. There is
a pole on the real A-axis in the integrand for these two functions and as § —x/2 with v small,
this affected the integration. Satisfactory covergence was obtained up to § =0.485n. To
obtain results at § = n/2, the results were extrapolated from those for 8 < 0.485 n.

RESULTS AND DISCUSSION

For loading case (a) the results for K, and K}, are presented in Fig. 5. Note that for all
results a Poisson’s ratio of 1/4 was used which gives a ratio of wave speeds
¢, = 3, cp= cL/(3.549)%. K, for normal loading and K, for shear loading are less than 2%
of the other stress intensity factor for the same loading and §/n < 0.25. At 8/n = 0.5 they
are still less than 159, which means they are essentially insignificant when compared to the
stress intensity factor corresponding to the mode of loading at the crack tip. This implies
that for finite loads on the new crack faces the geometry of the corner has only a minor effect
on the stress intensity factor at the kinked crack tip.

An interesting comparison can be made with Freund’s result in[13] for the case § = 0and
time independent loading. This result shows that for 6 =0

K =vcrt, 1) = k(ver)Ks(l = vert), &1

where o = I or Il for normal or shear loading, &,(v.y) is a universal function of instantaneous
crack tip velocity and Kj is the static stress intensity factor for a crack that has its length
increased, by an amount / = vy under the same time independent loading. &,(v:) is given
in[13] for mode I and in[19] for mode /1. (Note that Fig. 2 in[13] is slightly in error.) Kscan
be eliminated by comparing two cracks propagating with velocities v, v, such that v,1, = v,1,.
Then

K:x([ =ity !1) - ku(vl)

= . 8.2)
K( =015, 1) k,(v) 8-2)

If the left hand side is calculated from the results piesented herein, choosing v, = 0.1 ¢z and
comparing the results for the different values of , we find that for § < 0.25 = the results are
within 5% of Freund’s results and even up to 4 = 0.5 n the results are within 119;. It seems
possible then that at least for the time independent loading case such as case (a) that the
results could be phrased as in eqn (8.1) with the same function k. (v¢7).

For loading case (b), the results for normal and shear loading are given in Fig. 6(a, b).
For normal loading, K decreases with J, with the amount of decrease decreasing with ccr
increasing until for ver = 0.9 ¢z, K, increases with & slightly. For the shear loading the
decrease in K,, with & is not as dramatic. However, in both cases the other stress intensity
factor (K, for normal loading, K, for shear loading) increases rapidly (almost linearly with
&) except for vy = 0.9 ¢, For the normal loading case, there will be a velocity between 0.7 ¢,
and 0.9 ¢, which will have K, = 0 for some § in the range 0 to n/2. A suggested model for



Dynamic kinking of a crack in plane strain 747

0.8['
X
-
-
-
- o
0.7¢ //X’ ///
— -
- -
,.—X’/ ’,Q/ ot
- - —
x—”’ e”’ -
x_x_—x-—'-—"o ______ ‘///
—
O— Q=== —" —
-
P
06+ It
——”’
-
b oo T X
X +

X——x—0X x % /
*

054—+—+ ; +

> o -
[og O —Q — O *“J
——
—l-—
————
n.—n_n — ) ———
—

0.4 R

12
Kitg le t}

0.2
—— K, INORMAL LOADING) o Yoy /65 =01
— — K, {SHEAR LOADING  + Vi /c =023

01k X vm/cR = 0.5

[0] Vet /CR =0.7
VCT /CR =0.9

4] i i i i i
0 0.1 0.2 0.3 0.4 0.5
§/n

Fig. 5. K, for constant normal loading and Kj, for constant shear loading on the new crack faces
with 7o = pA.

quasistatic crack kinking is that the crack will propagate so that X, = 0{20]. If this was so,
and the crack would initiate as modeled herein, then it will do so for this loading with § > 0
at a higher velocity than normally observed for crack propagation. For shear loading, the
increase in K, with § may have application to geophysical fault modeling. In this case if
fracture occurs predominantly in mode I the conclusion would be for the crack to initiate
again at a high velocity.

It must be pointed out that requiring the solutions to be self-similar in r/¢ prevents a
delay time for crack initiation after the instant of load application being included in the
above results. However, Freund has extended his result to show that for the case § =0,
the instantaneous stress intensity factor does not depend on delay time provided times
greater than the delay time are considered[l14]. From the close correlation between
Freund’s result for the time independent loading case with é =0, and the case when § # 0
as calculated above, it may be true that delay times for é # 0 can be treated as for the
case 4 =0. This cannot be proven here but it does not appear to be an unreasonable
expectation.

If the stresses used for ¢12** and o 2** are considered, they are seen to follow the trends
of K;, K, with respect to dependence on 4, r/t. Although this is not entirely unexpected,
it has not been exploited before. This may be because nowhere in the literature could plots
of stress versus r/¢ for different values of 8 be found for the dynamic stress field around
a crack.

The stress intensity factors for case (c) are given for a number of angles « and § in
Tables 1(a)-2(d) where the values for X, and K|, are normalized by uA(c,¢):. Firstly, when
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Fig. 6(a). Stress intensity factors for normal step function loading on the old crack faces with
7y = pA. (b) Stress intensity factors for shear step function loading on the old crack faces with
Ty = pA.



Table 1(a). Normal stress wave loading at angle o with kinked crack propagating at vefc, =0.1

Dynamic kinking of a crack in plane strain

o/ Tz G625 175 35 L3715 .485
K, 1.0070 .9870 .9291 .7241 .4625  .2482
0 Ky O .1287  .2465  .4131  .4564  .3952
K, .0831 9875 .9531 7864 5452 .33
(03125 g -.0838  .0449 .1680 .3587 .4353 .4022
K .9483 9752 .9633 .6357 6180  .41l5
-0625 p --1590 -.0333 0921 .3014 .4081  .4026
K, .6514 9154 .943% .8937 .7297 544l
-125 Kyy --2775 -.1656 -.0446 .1842  .3392 .3845
K, 5993 .6968 7734 6440 7970 .6796
-25 Koy --361¢ -.2095 -.2170 -.0178 .1734  .2881
X, .3761 4486 5189 .6377 6614 6178
<375 Ky -+2439 -.2364 -.2104 -.1069 .0375  .1584
K, 3027 .3380 3797 4628 .5095  .4936
-45 K,y --1056 -.1197 -.1228 -.0864 .0005  .0930
XK, 2894 3041 .3278 3872 4201 4741
-485 K --0320 -.0521 =-.0653 =.0579 -.00175 .0751

Table i(b). Normal stress wave loading at angle a with kinked crack propagating at vcyfc, =0.3

a/r 5/7_ 0 0625 .125 .25 .375  .48%
K, 8484 .8295 .7747 .S818  .3387  .1435
0 K, © 1342 .2564  .4260  .4636  .3962
K. L8367  .B34z .7986  .6355  .4050  .205%
03125 T
K -.0778  .0565 .1846 .3795  .4499  .4073
K. .8071 .g281 .8123  .6816 4672 2680
.o625 T
K --1484 -.0175 .1129 .3276 .4288  .41l8
K, -7315 .7858 .8066 .7451 5749 3868
-125 Kyp --2614 -.1475 ~.0229 2131 .3664  .4007
. K 5228 6110 .6828 .7491 6957  .5678
: Kop --3457 -.2045 -.2174 -.0046 .1874  .3060
K, 3314 .4012 .4763 .6075 .6608 .6137
<375 Ky --2356 -.2534 -.2461 -.1540 .0092  .1569
X, .2674  .3049 .3582 .4Bl7 .5697 .5744
-45 Ky, --1020 -.1476 -.1762 -.1625 -.0572 .0736
. 2558 L2749 3129 .4206 5137 534
: Kyp --0310 -.0837 -.1247 -.1449 -.0717  .0429

Table 1(c). Normal stress wave loading at angle « with kinked crack propagating at v.y/cg =0.5

o/u &/n 0 . 0625 .125 .25 -375 -485
o KI L7078 .6911 . 6427 .4744 .2674 .1068
KII ¢] .1245 L2373 . 3909 .4202 .3551
KI .6982 . 6987 . 6665 .5212 . 3200 L1515
.03123
KII -.0685 . 0563 .1752 .3539 -4140 . 3703
KI L6801 .6973 -6817 .5625 L3716 .1990
L0625
KII -.1313 ~-.0098 L1117 . 3106 . 4005 L3797
125 KI .6218 . 6685 - 6854 .6255 - 4674 .2964
Kir -.2333 -.1289 ~.0127 2095 .3521 . 3800
KI <4506 .5294 .5949 .6552 . 6002 -4735
-25 KII -.3130 ~-.2725 ~-.2039 -~.0105 -1884 .3049
475 KI .2880 . 3526 .4257 .5579 .6131 .5702
KII -.2151 -.2461 -.2491 -.1665 .0013 .1586
a5 KI .2330 -2693 .3247 . 4589 .5581 .5668
° KII -.0933 -.1534 =~.1940 -.1923 -.0807 L0672
Ky «2230 - 2430 . 2854 - 4088 -5189 .5478
-485 KII ~-.0284 -.0959 ~.1496 -~.1833 -.1034 .0308

749
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Table }{d). Normal stress wave loading at angle « with kinked crack propagating at v.r/cg = 0.7

YL 57T 3 0635 .125 35 375 .a8%
o KI .5139 .5011 .4644 . 3385 .189S . 0805
K., o 1069 .2031  .3301  .3479  .2890
K 5095 .5094  .4844 3738 2859 1080
03125 T
K, --0568 .0506 .1526 .3030 .3477  .3057
X 4986 L5111 .4984 4062 .2639  .1389
0625 T
Ky ~-.1093 -.0049 .0999  .2695 .3412 .3181
K, 74597 .4949  .5071 .4586  .3355  .2065
-125 Ky --1959 -.1067 -.0060 .1873  .3084  .3278
N K, 3373 .3986  .4499  .4967  .4500 3463
. K., --2659 -.2355 -.1777 -.0056 .1740  .2781
% 3172 .26B4 L3281 .4379  .4834  .44%6
-375 K, --1841 -.2199 -.2281 -.1566 .0006  .1505
K, 1760 . 2057 2527  .3686  .4557  .4639
-45 K <--0800 -.1429 -.1866 -.1909 -.0838  .0619
X, 71685 L1856  .2228  .3325 4317 .4594
-485 Ky ~--0243 -.0935 -.1505 -.1885 -.1109 .0243

Table 2(a). Shear stress

wave loading at angle a with kinked crack propagating at v/c, = 0.1

a7m N 0625 135 35 375 485
. X, 0 -.3814 -.7365 -1.2803 -1.5241 -1.4983
Ky, 1.3363 1.2940 1.1695 7321 1837 -.2586
X 1906 -.1693 -.5178 -1.0880 -1.3900  ~1.4180
03125 T
Ky, 1.2329 1.2350 1.1564 .7958 2866 -.1460
X 3637 0336 -.3000  <.8823  -1.2343  -1.3146
. 0625 1
KII 1.1018 1.1475 1.1153 .8386 . 3796 -.0436
. & 76396 3908 L1107 -.4505 C.8718  -1.0%%8
: KII .7746 .8973 .9541 .8553 .5247 .1487
N K 8407 8054 7038 3551 <.6539 <.3353
: KII o] .2048 .3873 L6135 . 6000 L4153
e & 5700 L7357 .8394 YT 6455 3078
KII -.6514 =-.4853 -.2901 L1015 . 3697 L4402
K .2462 4878 6882 9156 5015 7518
<45 K, - --8623 ?_.7687 -.6224  -.2414 1244 L3323
XK .0748 3349 5670 8835 3581 5645
-485 K, --9002 -.8483 -.7362  -.3884  -.0027 .2561

Table 2(b). Shear stress wave loading at angle « with kinked crack propagating at v¢y/cg= 0.3

o/ 570 0625 135 5 375 485
K 0 -.3179 -.6086 -1.0231 -1.1571 -1.0589
° K;; 1.2351 1.1897 1.0590  .6119  .0871 - .2986
K 1621 -.1447 -.4410 -.9045 -1.1028 -1.0616
-03125 K,y 1.1491 11593 1l.0812 7105  .2077 - .1833
K, 3118 0347 -.2697 -.7706 -1.0356 -1.0489
-0825 , 1-0356 1.1001 1.0762  .7917  .3239 - .0781
xi 5569 3302 L0654 —.4e88 - 8479 - .9723
-125 K, 7394 %008 .9827  .8895  .5284  .1335
K 7504 7077 .5849  .1666 - .3048 - .6106
-25 Ky O 2668 .5024  .7820  .7376  .4801
K, 5l66 eed0 7357 61 3057 - .0d01
-375 KII .6471 -.4303 -.1794 L3027 .5820 .5812
X S3al 4477 L6304 7513 L5956 .3216
-45 KII _.8602 -.7384 -.5508 -.0799  .3241  .4850
xi 5683 3116 5198 7503 L6934 4739
-485 K -.8987 -.8315 -.6884 -.2584 L1752 L4202

i
el
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Table 2(c). Shear stress wave loading at angle a with kinked crack propagating at vcr/cg=0.5

a/s &/m o 6635 125 55375 Tass
K, o -.2648 -.5021 -.8104 ~-.8479 -.7102
0 Ky, 1.0823 1.0369 .9070 .4725 -.0095 -.3290
K 1364 -.1242 -.3732 -.7385 -.8435 -.7453
03125 T
K., 1.0157 1.0269 .9485 .5812 .1058  -.2329
K 3645 L0159 -.3375 -.6504 ~-.B8235 -.7715
0625 %
K, 9228  .9895 .95l .6769 .2221 -.1406
K, 4791 L3770 . 0384 -.4334 -.7340 -.7876
-125 K,  -6682  .8352 .9180 .8l42 .4429  .0617
X, 6591 .6162 .4935 .0827 -.3674 -.6332
.25 Kip 0 .2783  .5224 .8014 .7318  .4456
X, 4591 L5913 .6462 .5108 .1369 -.2283
-375 Ky ~--6041 -.3750 -.1111 .3931 .6669  .6314
X, 71998 4042z 5554 .6331 .4123  .0827
-45 Kyy --8056 =-.6763 -.4753 .0268 .4427  .5791
X 0608 L2843 .4705 L6447 5145 .2272
485 k. -.8421 -.7699 -.6148 -.1518 .3009  .5099

Table 2(d). Shear stress wave loading at angle a with kinked crack propagating at vey/cg = 0.7

on /10 0625 __.125 25 .37% 485
Ky 0  -.1938 -.3622 -.5558 -.5248 -.3790
° Ky, -8920 .8493 .7278 .3297 -.0844 -.3199
K, .0997 -.0937 -.2761 -.5221 -.5452 -.4216
03125
Ky, -8443  .8535 .7780 .4340 .0l24 ~-.2548
K. .1951 0077 -.1820 -.4739 -.5544 -.4613
0675 T
K, -7729 .8333  .8066 .5298 .1148 -.1859
& 3581 L3619 L0169 -.3387 <-.5328  -.5307
. Ky -5669 .7203 .7924 .6795 .3226 -.0202
K. 5014 4658 .3645 0299 -.3211 -.5028
.25 Ky O 2585  .4836 .7298  .6399  .3535
. Fr s a9 awr 3ess oals -.eal
Kyp --5265 -.3128 -.0634 .4083 .6516  .5947
- K. 1539 3153 4315 4714 9574 -.0412
. Kpg --7040 -.5816 -.3896 .0901 .4795  .5911
o fx 04 2239 @ Gme7 3418 .o6e:
. K, --7362 -.6669 -.5170 -.0701 .3601  .5444

K, < 0 the boundary conditions assumed are violated in that this implies interpretation of
the cracked kinked faces. Since K; < 0 does not imply any physically reasonable condition
for this analysis and the assumed boundary conditions are violated the signs of the loading
must be changed in these situations for the results to have any meaning. For both normal
and shear stress wave loading K,(« = I for normal, II for shear) has a maximum close to
o = 4. Also the other stress intensity factor is close to zero at this point. This latter
condition may be the appropriate criterion for choosing a particular kinking angle é for
a particular a. For those cases of shear loading when X, < 0, the problem would have to
be resolved allowing for contact between the crack faces if the solution for that particular
loading was required.

It is tempting to use the maximum value of energy release rate G [15] with respect to
6 for a particular v-r and a as a criterion for choosing é and vr. Since G is proportional
to ¢ this seems to be an unreasonable approach (although no more unreasonable than using
critical stress intensity factor as a criterion) for the above model. This is not meant to imply
that the criterion is incorrect. More likely the model that has been used is at fault.
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Before a criterion for kinking can be developed, more experimental results- must be

available. As mentioned already, the results coming out of[1] will help, but the conditions
immediately after kinking must be quantitatively determined.
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